首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27445篇
  免费   2526篇
  国内免费   1622篇
电工技术   1686篇
综合类   2083篇
化学工业   4381篇
金属工艺   2834篇
机械仪表   2188篇
建筑科学   1104篇
矿业工程   989篇
能源动力   1531篇
轻工业   613篇
水利工程   660篇
石油天然气   1083篇
武器工业   511篇
无线电   3592篇
一般工业技术   5873篇
冶金工业   633篇
原子能技术   462篇
自动化技术   1370篇
  2024年   46篇
  2023年   425篇
  2022年   618篇
  2021年   824篇
  2020年   916篇
  2019年   835篇
  2018年   803篇
  2017年   1056篇
  2016年   1039篇
  2015年   1037篇
  2014年   1540篇
  2013年   1739篇
  2012年   1945篇
  2011年   2243篇
  2010年   1753篇
  2009年   1780篇
  2008年   1550篇
  2007年   1753篇
  2006年   1623篇
  2005年   1255篇
  2004年   1086篇
  2003年   997篇
  2002年   751篇
  2001年   640篇
  2000年   542篇
  1999年   424篇
  1998年   411篇
  1997年   370篇
  1996年   318篇
  1995年   310篇
  1994年   218篇
  1993年   151篇
  1992年   125篇
  1991年   110篇
  1990年   79篇
  1989年   69篇
  1988年   53篇
  1987年   37篇
  1986年   31篇
  1985年   21篇
  1984年   11篇
  1983年   17篇
  1982年   14篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1974年   2篇
  1959年   3篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Shear deformation that dominates elementary chip formation in metal cutting greatly relies on crystal anisotropy. In the present work we investigate the influence of crystallographic orientation on shear angle in ultra-precision orthogonal diamond cutting of single crystalline copper by joint crystal plasticity finite element simulations and in-situ experiments integrated in scanning electron microscope. In particular, the experimental cutting conditions including a straight cutting edge are the same with that used in the 2D finite element simulations. Both simulations and experiments demonstrate a well agreement in chip profile and shear angle, as well as their dependence on crystallography. A series of finite element simulations of orthogonal cutting along different cutting directions for a specific crystallographic orientation are further performed, and predicated values of shear angle are used to calibrate an extended analytical model of shear angle based on the Ernst–Merchant relationship.  相似文献   
52.
化学气相沉积钨涂层具有工艺简单、技术成熟度高、涂层综合质量优异等特点,广泛应用于国防、航天、核工业等领域。首先介绍了化学气相沉积钨涂层的原理和特点,重点讨论了化学气相沉积钨涂层的工艺及应用研究现状,包括化学气相沉积钨涂层微观组织控制工艺及在耐辐射、耐磨耐蚀和高温防护领域的应用,同时对新型化学气相沉积钨涂层技术的发展进行了展望。一是改善现有工艺存在的反应气源与反应产物毒性大等问题,满足绿色环保的发展要求;二是改善现有工艺存在的沉积温度高、沉积速率偏低等问题,实现在不同衬底表面的高效、高质量沉积;三是改善现有化学气相沉积钨涂层结构与功能单一等问题,满足构件对钨涂层高性能和多功能的需求。  相似文献   
53.
A novel method of incorporating fluidized bed chemical vapor deposition (FBCVD) with electroless plating was developed to effectively prepare the core-shell structured WC-Co composite powders. The Co nanoparticles decorated on the surface of WC particles by FBCVD acted as active catalysts for the subsequent electroless plating process. The particle size and quantity of the decorated Co particles determined the electroless plating rate but the particle size played more important role. For the conditions tested, the maximum electroless plating rate of 2.34 mg/g/min was obtained by using an optimal FBCVD pretreatment at 750°C for 3 minutes. WC-12Co composite powders with a commercial composition widely used for atmospheric plasma spraying (APS) were efficiently prepared. The composite powders exhibited excellent suitability for APS by forming a homogenous Co-W-C ternary liquid stream. The APS coating is not only well-bonded with the substrate but also consisted of hard nonequilibrium Co3W3C and W2C phases with a uniform distribution. Both remarkably improved the hardness and tribological properties of the APS coating.  相似文献   
54.
《Ceramics International》2020,46(6):7122-7130
This study examines three novel approaches for enhancing the thermoelectric (TE) properties of atomic-layer-deposited (ALD) ZnO thin films: 1) Hf-doping, which preserved the crystallinity of ZnO and provided effective phonon scattering owing to Hf's similar atomic radius to and large mass difference with Zn, leading to high power factor (PF) and low thermal conductivity (κ); 2) controlling the distribution of Hf into an alternating scattered phase/clustered phase superlattice, which balanced the high PF of the scattered phases with the low κ of the clustered phases, while providing significant energy-filtering effect to raise the Seebeck coefficient; 3) introducing 18O/16O periodicity into the Hf:ZnO films—by alternately using H216O and H218O as oxidants in the ALD processes, which further suppressed κ without compromising PF. The combination of the three approaches resulted in a maximum improvement in ZT of ~1600% over that of the undoped ZnO.  相似文献   
55.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   
56.
In this research, Suspension Plasma Spraying (SPS) technique was used for the thermal deposition of a multicomponent mixture made up of an Y-TZP/Al2O3 matrix with SiC particles. Two suspensions of Y-TZP and Al2O3 with different SiC particles content (6?wt% and 12?wt%) were tested as feedstocks in the SPS process. Three stand-off distances were varied in order to assess coating microstructure and evaluate the presence of SiC in the final coatings. Coatings were characterised in terms of porosity, microstructure and phase distribution. The estimate of the amount of SiC in the coating was carried out by XRD technique.Findings showed typical cauliflower-like SPS microstructure which intensifies with stand-off distance. Coatings porosity varied significantly between 8% and 25% whereas minimum porosity was found for the intermedium stand-off distance of 40?mm.Microstructure analysis also revealed the presence of SiC particles in the coatings which was confirmed by EDX analysis, overall XRD tests as well as TG analysis. Finally, evaluation of SiC content in the final coatings by means of XRD analysis showed that most of SiC particles (c.a 80%) of the feedstocks were preserved in the final coatings.  相似文献   
57.
The thermoelectric properties of aluminum-doped tin oxide (ATO) thin films synthesized by thermal atomic layer deposition (ALD) were studied with respect to the aluminum concentration. The overall aluminum content in each layer was modulated by adjusting the relative number of tin oxide (SnO2) and aluminum oxide (Al2O3) growth cycles, where a sequential process involving n cycles of SnO2 growth followed by 1 cycle of Al2O3 deposition was performed (building up a super-cycle). The electrical conductivity (620 S/cm), free carrier concentration (1.23x1021 cm-3), and power factor (0.49 mW/K2m) increase until their maximum values are reached when the Al content is approximately 1.50 at% of the cations, and decrease as more Al is added in. On the other hand, the Seebeck coefficient decreases monotonically as the Al content increases up to about 2.88 at%, and begins to increase with further Al doping. Here the thermoelectric efficiency is therefore determined primarily by the free carrier concentration, while the Seebeck coefficient appears to be influenced by the overall crystal structure.  相似文献   
58.
In the present work, the preparation of sintered lithium-doped tricalcium phosphates was studied, along with their physical, mechanical, and biological properties. Calcium phosphates were shaped via the use of electrophoretic deposition (EPD), using colloidally milled dispersions of hydroxyapatite (HAp) particles. The dispersions were stabilised with monochloroacetic acid. Lithium was incorporated into the structure via an addition of lithium chloride, which also served to optimise the deposition process. The dispersions were milled colloidally for periods of 0–48 h. The colloidal milling resulted in two effects: i) disintegration of the commercial HAp powder (10 µm) agglomerates, ii) unimodal distribution of the HAp particles (~ 170 nm). The fine particles of the milled HAp dispersions accelerated the deposition rate, and increased the mass of the deposit. The reduced size of the initial particles, owed to the milling, led to the superior arrangement of the particles during deposition and to reduced porosity after sintering (1050–1250 °C). The HAp decomposed into tricalcium phosphate phases during sintering. At a sintering temperature of 1250 °C, grain growth occurred, which consequently resulted in a slight degradation of the mechanical properties (reduction in hardness and Young's modulus). In contrast, the hardness and Young's modulus increased as the dispersion milling time increased (smaller grain size after sintering); however, the fracture toughness did not change. The results of the biological testing confirmed the bioactivity of the material through the growth of the apatite layer in the simulated body fluid (SBF), and the biodegradation of the prepared materials in the Tris-HCl solution. With regard to the preparation of compact lithium-doped tricalcium phosphates, the best results were obtained in the case of the sample that utilised the dispersion that was milled for 48 h, and was sintered at 1050 °C.  相似文献   
59.
Chemical liquid vapor deposition (CLVD) is a rapid preparation method, but it is rarely involved in fabrication of C/C-UHTCs composites and its technology parameters are hardly discussed. In the present study, C/C-ZrC samples were prepared by CLVD process, and the effects of thermal gradient on the deposition behavior, microstructure and properties were investigated. Results exhibited the density, ZrC content and uniformity of the composites increased as the thermal gradient decreased from 30.4 to 9.8?°C/mm, indicating the deposition behavior was improved gradually. When the thermal gradient was 30.4?°C/mm, the deposition behavior of the specimen was poor, which resulted in the high porosity, small numbers of ZrC blocks and uneven distribution. Therefore, the specimen had a low flexural strength with brittle fracture and poor ablation resistance. As the thermal gradient decrease to 9.8?°C/mm, there was an excellent deposition in the composites, and the composites possessed large amounts of ZrC particles and their dispersion were improved remarkably. In this case, the composites displayed a non-brittle fracture with high strength, and the linear and mass ablation rates were reduced, which indicated an improvement of anti-ablation property. Nevertheless, the deposition was deteriorated evidently when the thermal gradient reached to 0?°C/mm. The density, ZrC content and uniformity of the sample became poor, leading to the decline of mechanical property and ablation resistance.  相似文献   
60.
采用静态悬滴法研究了润滑剂中脂肪酸、醇类和酯类添加剂在压延铜箔表面的接触角和润湿行为。利用半经验的量子化学方法计算了这些化合物的一些结构参数对其接触角进行了研究。利用遗传运算(GFA)统计分析方法,通过分子折射率和几种结构参数研究了其定量结构-性质关系。结果表明计算的量子参数可用于预测润滑剂在压延铜箔表面的接触角和润湿能力。这些润滑剂的接触角是其粘度、界面张力和物理化学参数的函数。其中起到主要作用的参数中,分子的折射率、分子的折射率、分子的弹性、总分子质量、溶剂表面积、元素计数、总能量和偶极子最关键。值得注意的是,润滑剂在压延铜箔表面的研究使润湿理论能精确到微观尺度,这为预测润滑剂在压延铜箔表面的润湿能力提供了新的见解。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号